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Abstract. I summarize recent work on non-Fermi liquids within a certain generalized Anderson
impurity model as well as in the large-dimensionality(D) limit of the two-band extended
Hubbard model. The competition between local charge and spin fluctuations leads either to
a Fermi liquid with renormalized quasiparticle excitations, or to non-Fermi liquids with spin–
charge separation. These results provide new insights into the phenomenological similarities
and differences between different correlated metals. While presenting these results, I outline a
general strategy of local approach to non-Fermi liquids in correlated electron systems.

1. Introduction

Since its introduction four decades ago, Landau’s Fermi-liquid theory has been the standard
model for interacting many-fermion systems [1]. The theory postulates that at low energies
only the quasiparticle excitations play an essential role. The quasiparticles, essentially
dressed fermions, can be adiabatically connected to certain non-interacting fermions as
we turn off the interaction strength. The Fermi-liquid description has been successful not
only for the weakly interacting electrons in simple metals, but also for strongly correlated
fermion systems. In this latter category are liquid3He [2, 3] for which the Fermi-liquid
theory was initially formulated, and the metallic states of V2O3-based compounds [4, 5],
the prototype material displaying the Mott-transition phenomenon [6]. Also included are
the ‘conventional’ heavy fermions [7, 8] such as CeCu6 and UPt3, in which the masses of
the quasiparticles are enhanced by as much as hundreds from the band-theory predictions.

In recent years, a number of strongly correlated materials have emerged which show
physical properties anomalous in the context of the canonical Fermi-liquid theory. These
include, in addition to the much-studied high-Tc copper oxide superconductors [9], a class
of novel heavy fermions [10], d- or f-electron-based metals close to quantum criticality
[11, 12], quasi-one-dimensional materials [13, 14], as well as certain artificially fabricated
metallic point contacts [15, 16].

The theoretical question, then, is: under what conditions do electron correlations lead to
a breakdown of Fermi-liquid theory? In the past few years, several theoretical approaches
have been taken to address this question. One approach builds on our understanding of
the breakdown of Fermi-liquid theory in one dimension. For weakly interacting one-
dimensional fermion systems, the perturbative renormalization group (RG) leads to the
g-ology classification of spatially homogeneous metallic states. The possible states are
Luttinger liquids or those with divergent CDW, SDW or superconducting correlation
functions [17, 18]. In dimensions higher than one, perturbative RG analysis has shown that
the Fermi-liquid theory does describe weakly interacting fermion systems with a regular
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density of states [19–21]. The mechanism for the breakdown of Fermi-liquid theory is
necessarily non-perturbative in interaction strength [22].

An alternative approach to non-Fermi liquids uses local physics as a starting point. The
motivations behind this approach are multi-fold. First of all, most of the correlated electron
systems are transition-metal-, rare-earth- or actinide-based compounds. The dominant
electron–electron interactions in these systems are local in space. This is the result of
quantum chemistry: the partially filled d or f orbitals are much more contracted than the
s and p orbitals of the simple metals and covalent semiconductors, making the intra-site
Coulomb interactions by far the largest interaction parameter. Secondly, Anderson- and
Kondo-like-impurity models have been studied extensively for more than three decades
[23]. In particular, the multi-channel Kondo problem has long been recognized to display
RG fixed points of the non-Fermi-liquid variety [24]. Finally, the large-D dynamical mean-
field theory [25, 26] opens the door for systematic treatment of the competition between
local dynamics and spatial fluctuations.

The work summarized here covers a specific source of local physics towards non-
Fermi liquids, namely the competition between local charge (valence) fluctuations and spin
fluctuations. This belongs to the domain of mixed-valence physics, a classic problem in
condensed-matter theory. It is different from the multi-channel physics for non-Fermi liquids
[24, 27]. In the remainder of this section, 1 introduce the problem, define the models, and
summarize the essential new results. More detailed discussions of the underlying physics are
given in the subsequent sections: sections 2 and 3 focus on the single-impurity generalized
Anderson model, and sections 4 and 5 discuss the two-band extended-Hubbard-lattice model.

1.1. Phenomenological considerations

Extensive studies on the heavy-fermion metals have led to a canonical picture for the
formation of a Fermi liquid in metals with strong local electron–electron interactions.
Figure 1 illustrates the point. Plotted here are the temperature dependence of the Cu-
site NMR relaxation rate [28] (1/T1) and that of the electrical resistivity [29] in CeCu6, one
of the so-called ‘vegetable’ heavy fermions. At asymptotically low temperatures, the NMR
relaxation rate [30] is linear in temperature, while the electrical resistivity is quadratic in
temperature. Both are characteristic of quasiparticle contributions. Simplistically speaking,
the number of thermally excited spin excitations is proportional to temperature as a result
of the Fermi–Dirac distribution. And each spin excitation contributes a temperature-
independent term to the flipping rate of nuclear spins, but aT -linear term to the quasiparticle
scattering rate. The latter is again due to the Fermi statistics, which reduces the phase space
for quasiparticle–quasiparticle scatterings. The experimental data behave very differently
at temperatures above about 5–10 K. Here, the NMR relaxation rate becomes essentially
temperature independent, while the temperature dependence of the electrical resistivity is
characteristic of Kondo scattering from local moments [23]. A local moment picture serves
as a better starting point for describing the f-electron degrees of freedom in this temperature
range.

This crossover phenomenon provided the phenomenological basis for the canonical
theoretical picture for heavy-fermion metals. In this picture, the f electrons cross over from
incoherent moments at high temperatures to being part of the renormalized quasiparticles in
a coherent Fermi liquid at the lowest temperatures. This is the lattice analogue of the broad
crossover that is known in the solution to the single-impurity Kondo problem [31–33]. In
the single-impurity problem, the characteristic crossover temperature is the Kondo energy.
In the lattice case, the crossover temperature relates to the coherence energy scale below
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Figure 1. The NMR relaxation rate (1/T1) and electrical resistivity (ρ) as functions of
temperature in the heavy-fermion compound CeCu6.

which the elementary excitations are quasiparticles with a heavy mass. The coherence
energy acts as the renormalized Fermi energy for the low-energy quasiparticle excitations.

This canonical picture appears to break down for a set of novel f-electron materials
[10]. At low temperatures, these materials typically have an electrical resistivity linear in
temperature, accompanied by anomalous features in a host of other physical properties.
The precise mechanisms for these low-temperature non-Fermi-liquid phenomenologies are
at this stage unclear. We refer the readers to the contribution of Mirandaet al [34] in this
Special Issue for a survey of theoretical ideas. The crossover from high to low energies in
these systems are only beginning to be addressed [35].

In the normal state of the high-Tc cuprates, the spin dynamics appears to show a
crossover qualitatively similar to that of the heavy fermions. Shown in figure 2 are
the temperature dependences of the NMR relaxation rate [36] and electrical resistivity
[37] in the optimally doped La2−xSrxCuO4. The temperature dependence of the NMR
relaxation rate behaves in a way reminiscent of that of CeCu6. It has the asymptotic low-
temperatureT -linear behaviour, crossing over to an essentially temperature-independent
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(a)

(b)

Figure 2. The NMR relaxation rate (1/T1) and electrical resistivity in theab-plane (ρab) as
functions of temperature in the normal state of the high-Tc compound La1.85Sr0.15CuO4.

behaviour at high temperatures. The crossover temperature scale is about 300 K, much
higher than that of the heavy fermions. The spin excitations can be thought of as the
quasiparticle–quasihole continuum at low temperatures, but as excitations derived from
local moments with short-range antiferromagnetic coupling at high temperatures. This
picture is corroborated by the neutron scattering results. The low-energy incommensurate
peaks are most naturally accounted for in terms of a quasiparticle contribution, while the
high-energy broad background is naturally interpreted in terms of short-range local moment
correlations [38, 39].

However, when it comes to the temperature dependence of the electrical resistivity,
the analogy with the heavy fermions stops. As can be seen in figure 2(b), the electrical
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resistivity is linear in temperature over the entire temperature range.
By now, there exists strong evidence that the dominant contribution to the electrical

resistivity in the high-Tc cuprates comes from electron–electron scattering [40, 41], as is
the case for the heavy fermions. The NMR relaxation rate is of course dominated by the
electronic contributions. It is therefore quite unusual that electrons in these systems yield
very similar magnetic responses (albeit with different energy scales), but entirely different
charge-transport properties. At the microscopic level, both the heavy fermions and copper
oxides can be described by a model with a strongly correlated band and a weakly correlated
one. The strongly correlated band is formed from the f orbitals in the heavy fermions and
from the 3dx2−y2 orbitals in the cuprates. The weakly correlated band is from the non-f
orbitals in the heavy fermions and from the oxygen 2p orbitals in the cuprates. For heavy
fermions, the point of departure for most theoretical work is the Anderson-lattice model.
For cuprates, the model that serves as a sufficiently general microscopic starting point is the
three-band extended Hubbard model [42, 43]. Each (planar) unit cell contains one copper
3d orbital and two oxygen 2p orbitals. The non-bonding combination of the 2p orbitals
is not expected to play an important role. When this non-bonding combination is ignored,
the three-band extended Hubbard model reduces to a two-band Anderson-lattice-like model.
We will call this class of models as the two-band extended Hubbard model [44].

Inspired by these considerations, the theoretical question that we ask is: can metallic
non-Fermi liquids occur in the two-band extended Hubbard model? We will address this
question by incorporating general local interactions allowed by symmetry. Our goal is
to treat interactions in a non-perturbative fashion, and seek to classify all of the possible
universality classes of this model.

Recent work on this subject can be naturally separated into two categories. Work in the
first category concerns exclusively the single-impurity physics. We have generalized the
standard Anderson model by including all of the on-site interactions allowed by symmetry
[45–48]. The authors of references [49–52, 106] have generalized the standard Anderson
model by introducing additional species of screening fermions. Work in the second category
deals with the large-D limit of the lattice extended Hubbard model [45–47, 53, 54]. Here
we address the physics of the lattice model on the basis of our understanding of the impurity
problem.

Connecting the local physics of an impurity model and a lattice model has a long
tradition. For instance, the slave-boson large-N approach was first constructed to describe
the Fermi-liquid state of the single-impurity Anderson model [55, 56]. The understanding
of the impurity problem set the stage for the slave-boson large-N description of the coherent
Fermi-liquid state of the Anderson-lattice model [57, 58].

1.2. The generalized Anderson model

The generalized Anderson model that we introduced [45–48] is

H = E0
dnd + Und↑nd↓ +

∑
kσ

Ekc
†
kσ ckσ +

∑
σ

t (d†
σ cσ + HC)+ V ndnc + JSd · sc. (1)

Here,ndσ = d†
σ dσ , nd = ∑

σ ndσ , nc = ∑
σ c

†
σ cσ , Sd = (1/2)

∑
σ,σ ′ d†

στ σσ ′dσ ′ , with τx ,
τy , andτz being the Pauli matrices, andSc = (1/2)

∑
σ,σ ′ c†στ σσ ′cσ ′ . The first four terms

describe the standard Anderson model. For the single-impurity spin-1
2 d orbital, the energy

level is E0
d , and the on-site Coulomb repulsionU . For the most part, we will consider

only theU = ∞ limit. For the spin-12 conduction c electrons, the energy dispersion isEk.
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c†σ = (1/
√
Nsite)

∑
k c

†
kσ is the Wannier orbital of the c electrons at the impurity site. It

hybridizes with the d electron through the hybridization matrixt .
The last two terms are additional interaction terms allowed by symmetry.V describes a

local density–density interaction between the impurity d and local c electrons. In the heavy-
fermion literature, this term is called the Falicov–Kimball interaction [59].J describes the
spin-exchange interaction between the d and c electrons. It describes the sum of the direct
exchange interaction and the indirect exchange interactions mediated by those high-energy
configurations not included in the model Hamiltonian.

(a) (b)

Figure 3. Impurity configurations and energy levels in (a) the symmetric Anderson model and
(b) the asymmetric Anderson model.

The standard Anderson model with a featureless conduction electron density of states has
already been solved. In the particle–hole- (p–h-) symmetric case, namely forU + 2E0

d = 0,
the impurity d levels are illustrated in figure 3(a). For sufficiently largeU , the empty
impurity configuration (|0〉) and the doubly occupied impurity configuration (|2〉 ≡ |↑↓〉)
can be eliminated through a Schrieffer–Wolff transformation [60]. The result is the Kondo
problem with antiferromagnetic exchange interaction. The latter problem is solved by a
variety of methods, including the scaling [31], numerical renormalization group (NRG)
[32], Betheansatz[33], and slave-boson large-N methods [56], and conformal field theory
[61]. The conclusion is that the low-lying excitations can be well described by the strong-
coupling Fermi-liquid fixed point. The local moment is quenched by the conduction electron
spin polarization and hence disappears from the low-lying excitation spectrum.

In the p–h-asymmetric case,U + 2E0
d � |E0

d |, three impurity configurations have to
be retained at low energies. This is the mixed-valence problem. It differs from the Kondo
problem in that low-lying local charge (valence) fluctuations coexist with spin fluctuations.
Historically, a variational study by Varma and Yafet [62], and RG studies of Haldane [63]
and Krishnamurthyet al [64], the Betheansatzsolution [33] and the slave-boson large-N

results [55] have all found that the low-energy behaviour of the mixed-valence problem is
described by a strong-coupling, Fermi-liquid fixed point. This fixed point is qualitatively
similar to that of the Kondo problem, though quantities such as the Wilson ratio are modified.

In references [45–48], we studied the generalized Anderson impurity model by extending
Haldane’s RG scheme such that the local charge fluctuations and local spin fluctuations are
treated on an equal footing. In the mixed-valence regime, there exist three, and only three,
kinds of fixed points. In addition to the aforementioned strong-coupling Fermi-liquid phase,
there are two non-Fermi-liquid phases which we termed the weak-coupling phase and the
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intermediate phase. The strong-coupling and weak-coupling phases are the direct analogues
of the strong-coupling phase of the antiferromagnetic Kondo problem and the weak-coupling
phase of the ferromagnetic Kondo problem, respectively. As for the local moment case,
the weak-coupling phase of the mixed-valence problem requires that the exchange coupling
be ferromagnetic. Therefore, this state is likely be of only academic value for the most
part. The possible exception is the double-exchange model for the perovskite manganese
oxides [65]. The intermediate phase is unique to the mixed-valence regime. Its existence
came as a surprise. In this new phase, spin and charge excitations are separated; the spin
susceptibility still has the Fermi-liquid form as in the strong-coupling phase, while the
charge susceptibility and the single-particle Green’s function have an algebraic behaviour
with interaction-dependent exponents. Our RG results are substantiated by the strong-
coupling atomic analysis [46] and by the exact solutions at certain exactly soluble points
(Toulouse points) [48].

The single-impurity model that Perakiset al [49] studied using the NRG is defined as
follows:

H = E0
dnd + Und↑nd↓ +

∑
kσ

Ekc
†
kσ ckσ +

∑
σ

t (d†
σ cσ + HC)

+ V ndnc +
N∑
l=1

Vlndncl +
N∑
l=1

∑
kσ

Ekc
†
l,kσ cl,kσ (2)

wherec†l,kσ , for l = 1, . . . , N , describe fermionic bands that interact, but do not hybridize,
with the impurity d electron. The screening interactionsVl are introduced so that the Friedel
sum rule is satisfied [66].

Reference [49] reported NRG results in the mixed-valence regime (withU = ∞). The
numerical results for the case of sufficiently large values of the screening interactionsVl
were interpreted as displaying divergent charge and spin susceptibilities near the mixed-
valence point. Such a phase is not expected from the Coulomb-gas RG analysis. Within the
Coulomb-gas RG picture, the effect of screening fermions is to modify the initial conditions
of the RG flow [45, 50, 67]. The additional screening channels, while increasing the
orthogonality effects, do not participate in the formation of fixed points other than the
three mentioned earlier. For sufficiently strongVl , the Coulomb-gas analysis predicts that
the mixed-valence state is the intermediate phase, with divergent charge susceptibility, but
regular spin susceptibility. While further NRG studies are clearly called for, here we note
that the existing numerical data of reference [49] might actually not be inconsistent with
our Coulomb-gas RG prediction. The reason is simple. Unlike the charge susceptibility,
the spin susceptibility continues to increase whenE0

d is decreased through the transition
regime. A true divergence is therefore hard to detect numerically.

1.3. The extended Hubbard model

The two-band extended Hubbard model is the lattice analogue of the generalized Anderson-
model equation (1), and is defined by the following Hamiltonian:

H =
∑
i

ε0
dndi + U

∑
i

ndi↑ndi↓ +
∑
ij,σ

tij c
†
iσ cjσ +

∑
iσ

t (d
†
iσ ciσ + HC)

+
∑
i

(V ndinci + JSdi · sci). (3)

The notation is essentially the same as in equation (1). The only difference is that we have
usedε0

d to label the d-electron level to emphasize the difference of this quantity in the lattice
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model from that of the impurity modelE0
d (see the discussions around equation (32) below).

The first four terms describe the standard Anderson-lattice model. The spin-1
2 d electrons

have an infinite on-site Coulomb repulsionU , and an energy levelε0
d . tij describes the kinetic

energy term of the c electrons. At every site, the d and c electrons hybridize with each other
through the hybridization matrixt . The last two terms represent the on-site density–density
and exchange interactions between the two bands at every site.

Unlike for the single-impurity problem, most of the studies on the Anderson-lattice
model in the literature focus on the p–h-asymmetric case. This is because the conventional
heavy-fermion metallic states are formed only in the p–h-asymmetric case (the p–h-
symmetric case has received renewed interest due to the new developments on the so-called
Kondo insulators [68]). We do not know as much about the standard Anderson-lattice
model as about the standard single-impurity Anderson model. Only a few of the theoretical
methods that have been used in the single-impurity problem are generalizable to the lattice
case. This includes the Gutzwiller-like variational wavefunctions [69, 70] and the slave-
boson large-N method [57, 58]. All of these approaches have led to the conclusion that
the low-energy regime is described by a Fermi liquid with heavy-mass quasiparticles. The
slave-boson large-N method has also been applied to the copper oxide model [71]. In the
metallic states without long-range order, the solution is again a Fermi liquid.

Our new understandings of the impurity physics, combined with the large-D approach,
have led to the conclusion that metallic non-Fermi-liquid solutions are possible in the
extended Hubbard model. This conclusion is firmly established in the large-D limit [45–47,
53, 54]. In fact, it turns out that the mixed-valence condition is much easier to realize in
the lattice models than in the single-impurity model.

Figure 4. The generalized Anderson model as a three-level system. The wavy lines represent
the conduction electron bath.

2. Non-Fermi liquids in the generalized Anderson model: the renormalization group

We focus first on the single-impurity problem. Given that the on-site repulsion is taken to
be infinity, the generalized Anderson model can be thought of as a three-level system with a
particular form of symmetry breaking. The schematic picture is given in figure 4. The three
levels correspond to the three impurity configurations:|α〉 = |0〉, |↑〉, |↓〉. The hybridization
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t , density–density interactionV , and spin exchangeJ couple these three levels to the free-
conduction-electron bath. Among the three levels,|↑〉 and|↓〉 are degenerate in the absence
of an external magnetic field. No symmetry, however, dictates the degeneracy of|0〉 with
|↑〉, |↓〉. It is therefore necessary to keep track of the energy level difference,E0

d , between
|↑〉, |↓〉 and |0〉. This section summarizes the RG analysis on the three-level system near
its criticality. Analysis of certain exactly soluble points—the Toulouse points—is the topic
of the next section.

2.1. The Coulomb-gas representation and the renormalization group

The RG analysis is based on a Coulomb-gas representation [31, 63] of the three-level system.
This is carried out through an expansion in terms of the hopping amplitudes between the
three configurations of the impurity problem. This is an extension of the classic work of
Haldane [63] such that the local charge fluctuations and spin fluctuations are treated on an
equal footing.

In practice, it is convenient to break the exchange couplingJSd · sc into JzSzds
z
c +

(J⊥/2)(S+
d s

−
c +S−

d s
+
c ) whereJz andJ⊥ represent the longitudinal and spin-flip components,

respectively.V andJz are diagonal in the impurity configuration basis. Their effects are
to cause different scattering potentials for the conduction electrons when they see different
impurity configurations. When the impurity configuration is frozen in|α〉, the scattering
potential that the conduction electron of spinσ experiences isV σα :

V σσ = V + Jz/4

V σ̄σ = V − Jz/4

V σ0 = 0.

(4)

Quite differently, the effects oft and J⊥ terms are to cause quantum transitions between
different impurity configurations. Specifically, the hybridizationt-term causes transitions
between the empty and singly occupied impurity configurations, and the spin-flipJ⊥-term
causes transitions between the spin-up and spin-down impurity configurations.

Figure 5. A typical hopping sequence in the atomic representation along the imaginary-time
axis τ ∈ [0, β ≡ 1/T ]. τi , for i = 1, . . . , n, labels the time at which the impurity hops from
one configuration to another.

To construct the Coulomb-gas representation, we expand the partition function in terms
of t and J⊥, and integrate out the conduction electron degrees of freedom. The resulting
form for the partition function is a summation over histories:

Z

Z0
=

∑
history

exp(−S[history]) (5)
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whereZ0 is the partition function of the free-conduction-electron sea. A history corresponds
to a sequence of quantum mechanical hoppings from one impurity state to another along
the imaginary-time axis. A transition from impurity state|α〉 to |β〉 is called a kink(α, β).
A history can be specified using the notation [α1, . . . , αn; τ1, . . . , τn] which specifies an
(αi, αi+1) kink at timeτi . Figure 5 illustrates a particular history. The statistical weight for
a given history turned out to be

S[α1, . . . , αn; τ1, . . . , τn] = −
∑
i

ln(yαiαi+1)+
∑
i

hαi+1

(τi+1 − τi)

ξ0

+
∑
i<j

[K(αi, αj )+K(αi+1, αj+1)−K(αi, αj+1)−K(αi+1, αj )]ln
(τj − τi)

ξ0

(6)

whereξ0 ∼ ρ0 is the ultraviolet inverse energy cut-off.

Figure 6. A schematic picture showing that the fugacities of the Coulomb-gas representation
correspond to the dimensionless quantum transition amplitudes between the impurity config-
urations. yt = tξ0 is the charge fugacity, andyj = J⊥ξ0 the spin fugacity.ξ0 is the inverse
energy cut-off.

This action has the form of a Coulomb gas with two distinctive species of Coulomb
‘charges’. The two Coulomb ‘charges’ correspond to the charge kink and the spin kink,
respectively. The fugacities of the two Coulomb ‘charges’ are

yt ≡ y0,σ = tξ0

yj ≡ y↑,↓ = J⊥
2
ξ0.

(7)

As illustrated in figure 6, the charge fugacityyt corresponds to the hopping amplitude
between two local states with different charge quantum numbers. Likewise, the spin fugacity
yj describes the hopping amplitude between the|↑〉 and |↓〉 configurations. The fieldshα
describe the energy splittings among the three configurations. In the absence of an external
magnetic field,h0 = − 2

3E
0
dξ0 andhσ = 1

3E
0
dξ0.

The logarithmic interactions between the hopping events reflect the reaction of the
electron bath towards the changes of the impurity configurations. The interaction strength
is characterized by the stiffness constants,εt = −K(0, σ ) andεj = −K(↑,↓) which in turn
are determined by the bare interaction strength of the original Hamiltonian. Specifically,

εt = 1

2

[(
1 − δσσ − δσ0

π

)2

+
(
δσ̄σ − δσ̄0

π

)2]
εj =

(
1 − δσσ − δσ̄σ

π

)2
(8)
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whereδσα = tan−1(πρ0V
σ
α ) is the scattering phase shift that the conduction electron bath

of spin σ—whose density of states isρ0—experiences when the impurity configuration is
frozen in |α〉.

The RG equations describe how the fugacities, stiffness constants, and the symmetry-
breaking field flow as we increase the cut-offξ . We follow the formalism of Cardy [72].
A detailed derivation can be found in references [46]. Here we quote the results:

dyt/d lnξ = (1 − εt )yt + ytyj

dyj/d lnξ = (1 − εj )yj + y2
t

dεt/d lnξ = −6εty
2
t + εj (y

2
t − y2

j )

dεj /d lnξ = −2εj (y
2
t + 2y2

j )

dEdξ/d lnξ = (y2
t − y2

j )+ Edξ(1 − 3y2
t ).

(9)

The RG flow of the fugacities determines how the amplitude for making transitions between
different impurity configurations are modified as we go towards longer time-scales. When
the amplitude grows the system is a Fermi liquid in analogy to the formation of Fermi
liquid in the usual Kondo problem. When this amplitude renormalizes to zero, quantum
coherence is destroyed and Fermi-liquid theory breaks down. This way, we cast the
breakdown of Fermi-liquid theory in the framework of the macroscopic-quantum-coherence
(MQC) problem [73]. The transitions between Fermi-liquid and non-Fermi-liquid phases
are extensions of the well known localization transitions in the MQC problem with one
essential difference. Here we deal with a specialthree-levelsystem instead of the canonical
two-levelsystem studied in the MQC literature. This leads to a richer phase diagram that
we describe below.

Figure 7. The phase diagram of the generalized Anderson-model equation (1) in the mixed-
valence regime. Hereεt andεj label the charge- and spin-stiffness constants defined in the text.
The vertical thick line, the horizontal thick line, and the dashed line are the boundaries between
the different mixed-valence states. The dashed line is schematic.
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2.2. Universality classes

Solving the RG flow establishes the existence of three, and only three, mixed-valence fixed
points. The phase diagram for the mixed-valence regime is specified in terms of the stiffness
constantsεt andεj and is given in figure 7.

Figure 8. Hopping sequences in the atomic representation for (a) the usual spin Kondo problem
and (b) the charge Kondo problem, i.e., the resonant-level model.

The physical meaning of the strong-coupling, weak-coupling, and intermediate phases
is most transparent when the three-level system is thought of as the hybrid of a two-level
spin Kondo problem and a two-level charge Kondo problem. In the spin Kondo problem,
the ‘charge’ of the corresponding Coulomb gas corresponds to the spin kink. A history ofn

spin kinks is shown in figure 8(a). The parameters of the Coulomb gas are the spin fugacity
yj = J⊥ξ0 and the spin-stiffness constantε′

j = [1 − (2/π) tan−1(πξ0Jz/4)]2. The RG flow
is well known [31] and is given in figure 9(a). For antiferromagneticJz, i.e. εj < 1, the
flow is towards the strong-coupling, Fermi-liquid fixed point. While for ferromagneticJz,
i.e. εj > 1, the flow is towards a line of weak-coupling fixed points. In a weak-coupling
fixed point, there is an asymptotically decoupled spin.

The charge Kondo effect describes the physics of the so-called resonant-level model
in the presence of a p–h symmetry. The spinless version of the Hamiltonian (1) with
E0
d = 0 reduces to the resonant-level model. It was realized some time ago [74, 75] that the

resonant-level model can be asymptotically mapped onto the anisotropic Kondo problem,
with the hybridizationt and the density–density interactionV playing the roles ofJ⊥ and
Jz, respectively. The ‘charge’ of the corresponding Coulomb gas describes a charge kink.
A history of charge kinks is illustrated in figure 8(b). The charge fugacity isyt = tξ0 and
the charge-stiffness constant isε′

t = (1/2)[1 − (2/π) tan−1(πξ0V/2)]2. The RG flow is
given in figure 9(b). The flow is towards a strong-coupling Fermi-liquid fixed point for
ε′
t < 1, but towards a line of weak-coupling fixed points forε′

t > 1. In a weak-coupling
fixed point, the charge degree of freedom is asymptotically decoupled. Note thatε′

t > 1
corresponds to−V > −V crit = (2/πρ0)tan[(

√
2 − 1)π/2], i.e., a range of finite attractive

density–density interaction. It is the charge analogue of the ferromagnetic interaction.
With this background on the charge sector alone and the spin sector alone, the meaning

of the strong-coupling phase of the mixed-valence problem is transparent. Both the spin
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Figure 9. The RG flows for (a) the usual spin Kondo
problem and (b) the resonant-level model.

Figure 10. Crossover diagrams in terms of temperature
(T ) and the impurity level (E0

d ) (a) for the strong-
coupling phase where1∗ is the renormalized resonance
width; and (b) for the intermediate phase whereEcd
labels the critical impurity level.

and charge Kondo problems are in the strong-coupling regime; rapid fluctuations between
all three local configurations take place and the conduction electrons quench both the charge
and spin degrees of freedom of the impurity. It is expected that this phase is a Fermi liquid.
A large-N analysis of this regime indeed gives rise to this [46]. So do the exact solutions
of the two strong-coupling Toulouse points (see the next section). Likewise, in the weak-
coupling phase, neither the local charge nor the local spin degrees of freedom is quenched.
Both the spin and charge Kondo problems are in the weak-coupling regime, and all three
atomic configurations decouple asymptotically at low energies. The weak-coupling phase
requires that the spin-exchange interaction be ferromagnetic. It is therefore very likely to
be of only academic value with the possible exception of the double-exchange model.

The unexpected phase is the intermediate phase. Here, the local spin degrees of freedom
are quenched, but the local charge degrees of freedom are not. The charge Kondo problem
is in the weak-coupling regime despite the fact that the spin Kondo problem is in the
strong-coupling regime. There aretwo local configurations carrying different charges which
are decoupled asymptotically. The RG analysis establishes this as an allowed phase. The
alternative situation, with the spin Kondo problem being in the weak-coupling situation
and at the same time the charge Kondo problem being in the strong-coupling case, is not
allowed: a relevant charge flipping (hybridization) drives the spin flipping relevant. The
domain of attraction of the intermediate phase spans the parameter range withinεt > 1 and
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εj < 1. The RG analysis cannot specify the precise boundary between the strong-coupling
and intermediate phases; the dashed line is only schematic. In terms of the parameters
of the Hamiltonian (1), in which the density–density interactionV is on site, this domain
corresponds to a region with antiferromagnetic exchange interactionJ and attractiveV .
Taking V as an effective parameter this condition can be satisfied in a variety of realistic
models with all interactions repulsive [47]. Finite-range interactions also help to realize these
phases, as discussed in the context of impurity models [49, 50] and in lattice models [54]
(see section 5). The transition between the different regimes is analogous to the localization
phase transition studied in the context of the macroscopic-quantum-coherence problem [73]
and more recently in the context of transport through constrictions in interacting quantum
wires [76].

There is one important difference in symmetry between the asymmetric Anderson model
and the p–h-symmetric resonant-level model. The p–h-symmetric resonant-level model has
a U(1) symmetry which ensures that the impurity level stays at the Fermi energy of the
conduction electron sea. Equivalently, the singly occupied configuration and the empty
configuration are guaranteed to be degenerate by symmetry. This degeneracy is responsible
for the charge Kondo effect. In the case of the asymmetric Anderson model, no symmetry
protects the degeneracy of the singly occupied and the empty impurity configurations.
Degeneracy can be achieved only through fine tuning the bare impurity level. The condition
for this degeneracy is none other than the condition for mixed valency.

The phase diagram given in figure 7 applies only to the mixed-valence regime. When the
mixed-valence condition is not satisfied, the impurity level is either too far below the Fermi
energy or too far above the Fermi energy. They correspond to the local moment and empty
orbital regimes, respectively. How far is too far away from the Fermi energy depends on
whether the corresponding mixed-valence state falls in the strong-coupling, weak-coupling,
or intermediate domain. This crossover from local moment, mixed valence, to the empty
orbital regimes is specified in the temperature versus impurity level space in figure 10.

Figure 10(a) specifies the finite-temperature crossover for the strong-coupling case.
At zero temperature, the mixed-valence crossover extends over a scale of∼1∗, the
renormalized resonance width. The value of1∗ depends, of course, on where we are
in the phase diagram of figure 7. It is finite within the strong-coupling domain. As we
approach the phase boundary to the intermediate or weak-coupling phases,1∗ vanishes in
a Kosterlitz–Thouless fashion:

1∗ ≈ (ρ0)
−1 exp[−1/

√
εcrit − ε] (10)

whereεcrit − ε measures the distance from the phase boundary.
For the intermediate phase,1∗ = 0, and the mixed-valence point is a zero-temperature

critical point. At finite temperatures, there are three energy parameters: temperature (T ),
the running symmetry-breaking fieldδEd(T ) ∼ (E0

d − Ecd) − 10(T ξ0)
(2ε∗

t −1), and the
running resonance width1(T ) ∼ 10(T ξ0)

(2ε∗
t −1) (where10 ≈ πρ0t

2 is the bare resonance
width). The critical behaviour associated with the mixed-valence critical point occurs when
|δEd(T )| < 1(T ) < T . This condition specifies the following crossover scale:

T ′ ∼ 1

ξ0
|(E0

d − Ecd)/10|1/(2ε∗
t −1). (11)

The correlation functions assume the form characteristic of the intermediate phase atT > T ′

for a givenE0
d , or equivalently, for a given temperature, whenE0

d is tuned to the range

|E0
d − Ecd | < 10(T ξ0)

(2ε∗
t −1). (12)



NFL in the extended Hubbard model 9967

The intermediate mixed-valence regime is a manifestation of the quantum critical phenom-
enon in the context of quantum impurity models [77].

2.3. Further remarks

Our most interesting finding in the mixed-valence regime is the existence of a new phase, the
intermediate phase. The Coulomb-gas RG analysis provides the qualitative physical picture
of the intermediate phase: spin excitations are quasiparticle-like, and charge excitations
incoherent. However, the Coulomb-gas RG analysis is not capable of determining the
precise forms of the correlation functions for the intermediate phase (neither is it for the
strong-coupling phase, for that matter). This calls for alternative means through which
correlation functions can be calculated explicitly. In the next section, we present explicit
results for the correlation functions near several exactly soluble points.

The Coulomb-gas representation is based on the dilute-instanton expansion. The RG
analysis, while non-perturbative in the stiffness constants, is perturbative in terms of the
fugacities. It is in principle possible that additional fixed points, not captured by the
dilute-instanton expansion, may occur. An example for the latter arises in the related,
though qualitatively different, problem of tunnelling through a point contact in a Luttinger
liquid [76, 78]. One way to probe the nature of the fixed points is to carry out a strong-
coupling atomic analysis, in the same spirit that Nozières did for the usual Kondo problem
[79]. Namely, one analyses whether the couplings are stable around the point where the
couplings associated with the relevant fugacities take infinite values. We found that these
points are indeed stable [46], giving some support to the assertion that the Coulomb-gas
RG classification of the universality classes is complete. This analysis of course does not
completely rule out the existence of more fixed points. This issue became even more urgent
due to the bosonization work of references [52, 51] which reported fixed points not expected
from the Coulomb-gas RG picture. It turned out that, as discussed in some detail in the next
section, there are some technical subtleties with the application of the bosonization method
to the mixed-valence problem. When these subtleties are taken care of, the bosonization
results became consistent with the Coulomb-gas RG predictions.

3. Non-Fermi liquids in the generalized Anderson model: Toulouse points

There are three particular combinations of the interactions [48] where the model is exactly
soluble [80]. These points in the interaction parameter space are the mixed-valence
counterparts of the usual Toulouse point of the Kondo problem [81, 31], and are naturally
called the Toulouse points of the mixed-valence problem.

We identify the possible Toulouse points using the bosonization method [42]. Given
that the interaction occurs atr = 0 only, we need to keep only the s-wave component of the
conduction electrons. This s-wave component is defined on the radial axis,r ∈ [0,+∞), and
can be further decomposed into outgoing and incoming components. In a standard fashion,
we extend to the full axis,x ∈ (−∞,+∞), by retaining only one chiral component, which
we denote byψσ (x). We can then introduce a boson representation for theψσ (x)-field. At
the origin,

ψ†
σ (x = 0) = F †

σ

1√
2πa

ei8σ . (13)

Here, a is a cut-off scale which can be taken as a lattice spacing.8σ is the shorthand
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notation for8σ(x = 0):

8σ =
∑
q>0

√
2π

qL
(−ib†

qσe−qa/2 + ibqσe−qa/2) (14)

wherebqσ andb†
qσ are the Tomonaga bosons, andL is the length of the dimension and is

taken to be infinite in the end. An important point is that8σ depends only on theq 6= 0
components of the Tomonaga bosons. In equation (13), the operatorF †

σ , and its adjoint
Fσ , are the so-called Klein factors. They have to be introduced in order to preserve the
anti-commutation relation between fermions of different spin components. They should be
thought of as acting on theq = 0 sector of the Hilbert space for the Tomonaga bosons. More
precisely, the Klein factors can be defined as the raising and lowering operators, respectively,
in such a Hilbert space [18, 82, 83]. These operators are unitary, and anticommute among
the different spin species. Furthermore, they commute withbqσ and b†

qσ for q 6= 0 and,
hence, also with8σ .

The generalized Anderson model can be rewritten in the bosonized form:

H = H0 + E0
d

∑
σ

Xσσ +H⊥t +H⊥j +HV

H0 = vF

4π

∫
dx

[(
d8s

dx

)2

+
(

d8c

dx

)2]
H⊥t = t√

2πa

∑
σ

[Xσ0Fσe−i(1/
√

2)8ce−iσ(1/
√

2)8s + HC]

H⊥j = J⊥
4πa

[X↑↓F
†
↓F↑e−i

√
28s + HC]

HV =
∑
α

Xαα

[(
δsα

πρ0

)(
1

2π

)(
d8s

dx

)
x=0

+
(
δcα

πρ0

)(
1

2π

)(
d8c

dx

)
x=0

]
(15)

where we have usednd = ∑
σ Xσσ , d†

σ = Xσ0, S+
d = X↑↓, and Szd = (X↑↑ − X↓↓)/2.

Xαβ = |α〉〈β| are the Hubbard operators. The requirement thatα, β take three, and only
three, impurity configurations,|0〉 and |σ 〉 = d†

σ |0〉, amounts to the following constraint:

X↑↑ +X↓↓ +X00 = 1. (16)

In equation (15),8c,s ≡ (8↑ ± 8↓)/
√

2 are the charge and spin bosons, respectively.
δcα ≡ (1/

√
2)

∑
σ δ

σ
α andδsα ≡ (1/

√
2)

∑
σ σδ

σ
α . vF = 1/2πρ0 is the Fermi velocity.

The Toulouse points are derived through applying a canonical transformation to the
Hamiltonian equation (15) and demanding that the transformedH⊥t andH⊥j have simple
forms and, simultaneously, the transformedHV vanishes. Three such Toulouse points
exist. The details are given in reference [48]. In the following, we only quote the effective
Hamiltonian, and the results for the single-particle, spin–spin, and charge–charge correlation
functions, at each of these Toulouse points.

3.1. Strong-coupling Toulouse point I

The first Toulouse point corresponds toεt = 0 andεj = 0. According to the phase diagram
(figure 7) of the Coulomb-gas RG analysis, this point lies deep in the strong-coupling,
Fermi-liquid region.



NFL in the extended Hubbard model 9969

To write down the effective Hamiltonian, we need to introduce pseudoboson operators
b†
σ andb†

0 defined as follows:

Xσσ ′ = f †
σ fσ ′

Xσ0 = f †
σ b0

X00 = b
†
0b0

b†
σ = f †

σ F
†
σ̄ .

(17)

Note that the pseudoboson operatorb†
σ incorporates a Klein operator associated with

the conduction electron degrees of freedom. In terms of these operators, the constraint
equation (16) can be rewritten as

∑
σ b

†
σ bσ + b†

0b0 = 1. The effective Hamiltonian can then
be conveniently written as

HA
eff = H0 +H3l +1H

H3l = E0
d

(∑
σ

b†
σ bσ − b

†
0b0

)
+ t√

2πa

∑
σ

(b†
σ b0 + HC)− J⊥

4πa
(b

†
↑b↓ + HC)

1H =
(
κc

2πρ0

)(∑
σ

b†
σ bσ − b

†
0b0

)(
1

2π

)(
d8c

dx

)
x=0

+
(
κs

2πρ0

)(∑
σ

σb†
σ bσ

)(
1

2π

)(
d8s

dx

)
x=0

(18)

whereκc andκs measure the deviation from the Toulouse point. This effective Hamiltonian
is composed of three parts.H3l is the Hamiltonian for the three isolated levels,b†

↑|vac〉,
b

†
↓|vac〉, andb†

0|vac〉, where|vac〉 denotes the vacuum state. Thet andJ⊥ are transverse
fields, andE0

d provides a longitudinal field.H0 describes the free-spin and free-charge
bosonic fields. Finally,1H is the dissipative term coupling the three levels to the bosonic
baths. The effective Hamiltonian therefore is a three-level generalization of the two-level
‘spin’-boson problem [84, 73].

All of the correlation functions of this three-level ‘spin’-boson problem can be calculated
explicitly. The results for the single-particle Green’s functionGd(τ) = −〈Tτdσ (τ )d†

σ (0)〉,
the density–density correlation functionχρ(τ) = 〈Tτnd(τ )nd(0)〉, the longitudinal and
transverse spin–spin correlation functionsχzzσ (τ ) = 〈TτSz(τ )Sz(0)〉 and χ+−

σ (τ ) =
〈TτS−(τ )S+(0)〉 are given as follows:

Gd(τ) ∼ ρ0

τ

χ−+
σ (τ ) ∼

(
ρ0

τ

)2

χzzσ (τ ) ∼
(

κs

2πρ0hs

)2(
ρ0

τ

)2

χρ(τ) ∼
(

κc

2πρ0hc

)2(
ρ0

τ

)2

(19)

wherehs = J⊥/4πa andhc = t/
√

2πa. A long-time 1/τ behaviour for the single-particle
Green’s function, together with the 1/τ 2 behaviour for the two-particle correlation functions,
imply that the system is a Fermi liquid. Therefore, this Toulouse point describes the strong-
coupling phase.
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Unlike for the Kondo problem, keeping track of the anticommutation relation between
fermions of different spins in the boson representation plays an essential role. Had we not
included the Klein operator in the boson representation of the fermion operator equation (13),
the pseudoboson operatorbσ defined in equation (17) would not have included the additional
Klein operator (it would then be a pseudofermion, as a matter of fact). The sign of the
J⊥-term would be reversed. It can be seen by diagonalizing the three-level atomic problem,
H3l , that a level crossing would arise asE0

d is varied. The critical value ofE0
d where levels

cross would correspond to a non-Fermi-liquid critical point. A signature for the unphysical
nature of the non-Fermi-liquid critical point associated with the level crossing can be seen
by comparing the transverse and longitudinal spin–spin correlation functions. It can be
shown that the longitudinal spin–spin correlation function has a non-Fermi-liquid form, but
the transverse spin–spin correlation function retains the Fermi-liquid form. As a matter of
fact, the level crossing would have occurred had we started from an unphysical model with
Jz antiferromagnetic butJ⊥ ferromagnetic.

Within the bosonization approach, the meaning of the atomic configurations in the
canonically transformed bases is somewhat obscure. The physical content of these
configurations becomes transparent once we compare them with the atomic configurations
that appear in a perturbation expansion of the original Hamiltonian in terms ofJ⊥/Jz, J⊥/V ,
t/Jz, t/V , W/Jz, andW/V . This atomic analysis is carried out in reference [48], from
which it is physically clear that the ground state is always a singlet no matter what the value
of E0

d is. No level crossing is expected!

3.2. Strong-coupling Toulouse point II

This corresponds toεt = 1/2 andεj = 0. The Coulomb-gas analysis would again predict
this point to be deep in the domain of attraction of the strong-coupling Fermi-liquid phase.
The effective Hamiltonian is

HB
eff = H0 + E0

d

∑
σ

f̃ †
σ f̃σ + t

[(∑
σ

f̃ †
σ

)
η + HC

]
− J⊥

4πa
(f̃

†
↑ f̃↓ + HC)+

(
κs

2πρ0

)(∑
σ

σ f̃ †
σ f̃σ

)(
1

2π

)(
d8s

dx

)
x=0

. (20)

Here, η†
k denotes a spinless conduction electron band; it comes from refermionizing the

charge boson.f̃ †
σ = Xσ0FσF

†
η is a pseudofermion operator. Unlike forHA

eff , we have kept
only the κs-term in1H , as theκc-term is not important. All of the correlation functions
can once again be explicitly determined:

Gd(τ) ∼ ρ0

τ

χ−+
σ (τ ) ∼

(
ρ0

τ

)2

χzzσ (τ ) ∼
(

κs

2πρ0hs

)2(
ρ0

τ

)2

χρ(τ) ∼
(
ρ0

τ

)2

(21)

whereκs is again the deviation from the Toulouse point. Once again, the long-time behaviour
of the single-particle and two-particle correlation functions establishes the strong-coupling,
Fermi-liquid nature of this Toulouse point.



NFL in the extended Hubbard model 9971

Except for the change of sign inJ⊥, the effective Hamiltonian (20) is identical to that
of references [52] and [51]. Once again, when the Klein operators are properly incorporated
in the bosonization representation of the fermion fields, no level crossing occurs.

3.3. The Toulouse point for the intermediate phase

This last Toulouse point occurs atεt = 1 andεj = 0. It is not inconsistent with the Coulomb-
gas result that these values of the Coulomb-gas stiffnesses lie close to such a boundary
(though it is not possible to determine the precise boundary between the intermediate phase
and the strong-coupling phase from the Coulomb-gas analysis).

In order to write down the effective Hamiltonian in a convenient fashion, we need to
introduce a new basis set for the three levels,|A〉, |B〉, and|0〉. They are defined as follows:

|A〉 = 1√
2

∑
σ

(−σf †
σ F

†
σ̄ )|vac〉

|B〉 = 1√
2

∑
σ

(−f †
σ F

†
σ̄ )|vac〉

|0〉 = b
†
0|vac〉

(22)

wheref †
σ and b†

0 are pseudofermion and pseudoboson operators defined in equation (17).
In this new basis,nd = ∑

σ f
†
σ fσ = (XAA + XBB − X00), Szd = (1/2)

∑
σ σf

†
σ fσ =

(XAB+XBA)/2, andX↑↓F
†
↓F↑ = −XAA+XBB . The effective Hamiltonian has the following

form:

HC
eff =

∑
kσ

Ekc
†
kσ ckσ + 2t

√
πa[XA0c↑c↓ + HC] +

(
E0
d − J⊥

4πa

)
XAA +

(
E0
d + J⊥

4πa

)
XBB

+ κc

2πρ0
(XAA +XBB −X00)(c

†
↑c↑ + c

†
↓c↓)

+ κs

2πρ0
(XAB +XBA)(c

†
↑c↑ − c

†
↓c↓). (23)

In this effective Hamiltonian, the charge sector is described by a genuinecharge Kondo
model. |A〉 and |0〉 play the role of|↑〉 and |↓〉 of the anisotropic spin Kondo problem
and should be thought of as objects carrying charge 2 and charge 0, respectively. The
transformed hybridization term is the direct analogue of the spin-flip term in the anisotropic
spin Kondo problem. The residual interaction in the charge sector,κc/2πρ0, is the analogue
of the longitudinal exchange interaction in the anisotropic spin Kondo problem, with the
density playing the role of the spin in the latter. The essential difference between the
charge Kondo problem in this mixed-valence context and the spin Kondo problem lies in
the symmetry-breaking field. In the latter, the spin rotational invariance guarantees that no
explicit magnetic field term will be generated in the absence of an external magnetic field.
In our charge Kondo problem, the p–h symmetry is explicitly broken, and the symmetry-
breaking fieldhcharge= E0

d − J⊥/4πa is in general non-zero. For the impurity problem, the
condition that the renormalizedhcharge vanishes can be achieved only through fine tuning
the bare d levelE0

d to a critical valueEcd .
Whenhcharge= 0 is enforced, a zero-temperature quantum phase transition takes place

as κc is increased through zero. The transition is characterized by a Kosterlitz–Thouless
transition in the charge sector; the spin sector is not critical. The phenomenology of the
intermediate phase is recovered on the negative-κc side, to which the remainder of this
section is devoted. Here, the charge sector is described by the weak-coupling fixed points of
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the charge Kondo problem, while the spin excitations are described by the strong-coupling,
Fermi-liquid-like fixed point of the Kondo problem. A spin–charge separation takes place.

Within the charge sector, the impurity configuration in the ground state is entirely|0〉
for hcharge< 0, and|A〉 for hcharge> 0. This is the result of infinite charge susceptibility in
the corresponding ferromagnetic charge Kondo problem. Exactly athcharge = 0—namely,
whenE0

d is tuned to the critical valueEcd = J⊥/4πa—the impurity degrees of freedom in
the ground state involve an equal, incoherent, mixture of|0〉 and |A〉. Schematically, the
ground-state wavefunction can be written asφ = |A〉φA + |0〉φ0 whereφA andφ0 are the
wavefunctions of the conduction electrons such thatφ is the solution to a ferromagnetic
Kondo model with zero magnetic field. Withhcharge = 0, the intermediate mixed-valence
dynamics applies at all temperatures. WhenE0

d is moved away from the critical value, a
finite crossover temperatureTco ∼ |E0

d − Ecd | emerges. The intermediate mixed-valence
dynamics continues to apply atT > Tco. At low temperatures (T < Tco), however, the
charge fluctuations become gapped out.

The single-particle, density–density, longitudinal and transverse spin–spin correlation
functions are given as follows:

Gd(τ) ∼
(
ρ0

τ

)[1/2+(1/2)(1−√
2κc/π)2]

χcρ(τ ) ∼ (ρ0t)
2

(−4κc)

(
ρ0

τ

)(−4κc)

χ−+
σ (τ ) ∼

(
ρ0

τ

)2

χzzσ (τ ) ∼
(

κs

2πρ0hs

)2(
ρ0

τ

)2

(24)

whereχcρ labels the connected part. The exponent for the single-particle Green’s function
is particularly noteworthy. The12 part is the contribution of the spin degrees of freedom. It
is independent of interactions, and is the same value as we would get for a non-interacting
problem! The remaining part,12(1−√

2κc/π)2, is due to the charge degrees of freedom and
is interaction dependent. This is consistent with the physical picture that in the intermediate
phase the low-lying spin excitations are quasiparticle-like while charge excitations have the
non-Fermi-liquid form.

Other correlation functions in the charge sector also have an algebraic behaviour with
interaction-dependent exponents, and a pairing susceptibility:〈

Tτ

(∑
σ

cσ dσ̄

)
(τ )

(∑
σ

d
†
σ̄ c

†
σ

)
(0)

〉
∼

(
ρ0

τ

)(κc/√2π)2

(25)

is enhanced compared to the Fermi-liquid case. This makes it plausible that the ground
state in the corresponding lattice model is superconducting. In that case, the intermediate
mixed-valence dynamics would describe the physics in the normal state, i.e., at temperatures
between the transition temperature and some upper cut-off energy scale.

To summarize, the explicit results for the correlation functions at this Toulouse point
highlight all of the features expected of an intermediate phase: spin–charge separation; a
quasiparticle residue vanishing in a power-law fashion; Fermi-liquid-like spin-correlation
functions; and self-similar local charge correlation functions with interaction-dependent
exponents. We note in passing that these characteristics bear a strong similarity to those of
the Luttinger liquid in one-dimensional interacting fermion systems [17, 18, 13, 14].
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Figure 11. A schematic picture of the lattice model and its reduction to an effective impurity
model with a self-consistent conduction electron bath in the large-D limit.

4. The extended Hubbard model as a lattice of Anderson impurities: the large-D
limit

We now turn to the lattice model, equation (3), which we suggestively rewrite as

H =
∑
i

hi +
∑
ij

hij

hi = ε0
dndi + Undi↑ndi↓ + t

(∑
σ

d
†
iσ ciσ + HC

)
+ V ndinci + JSdi · sci

hij = tij
∑
σ

c
†
iσ cjσ .

(26)

This is pictorially illustrated in figure 11(a), in which each black dot represents anhi-term,
and across each bond on the lattice there is anhij -term.

4.1. Mapping to a self-consistent impurity problem in the large-D limit

The limit of infinite dimensions [25, 26] is defined by scaling the hopping term,tij , in terms
of the dimensionality (D) such that the limit is well defined. For the nearest-neighbour
hopping

t〈ij〉 = t0√
2D

. (27)

TheD → ∞ limit is taken with t0 kept fixed.
We recall that the large-D limit of a classical non-frustrated lattice spin system is taken

by scaling the nearest-neighbour coupling to be of order 1/D. For any given site, the
homogeneous contributions from neighbouring sites add up to an effective field, of order
unity, that acts on the spin of the selected site. All other contributions are of finite orders in
1/D and vanish in the large-D limit. This is the content of the Weiss molecular-field theory
for classical magnets. In the quantum systems, the single-particle hopping contributes to the
kinetic energy of the fermion system which, at zero temperature, is the zero-point energy
associated with quantum fluctuations. The 1/

√
D scaling in equation (27), as opposed to

the 1/D scaling, is necessary to capture these quantum fluctuations. With this scaling, the
average kinetic energy per unit cell is of order unity in the large-D limit.

In finite dimensions, when on-site interactions are present, a single-particle-hopping
term will generate effective inter-site interactions involving two or more particles. With the
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single-particle-hopping term being scaled as in equation (27), the interactions generated are
of the order of 1/D or higher.

For a selected site, say site 0, the effect of the rest of the sites is to generate a retarded
Wiess mean field that couples to the single-particle degrees of freedom at site zero. The
modifications to the on-site dynamics involving two or more particles are of higher order in
1/D and do not survive in the large-D limit. The result is that all local correlation functions
of the lattice model can be entirely determined by the following effective on-site action:

S
eff

imp = S0 −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

c
†
0σ (τ )g

−1
0 (τ − τ ′)c0σ (τ

′). (28)

S0 is the action associated withh0. Sinceh0 contains all the local interactions, the procedure
treats the local interactions in a dynamical fashion.g−1

0 (τ − τ ′), or equivalently its Fourier
transform,g−1

0 (iωn), where iωn is the fermionic Matsubara frequency, is retarded. This
is the result of integrating out the degrees of freedom other than those for site 0, at the
one-particle level. Pictorially,g−1

0 describes the effect of all of the Feynman trajectories
in which one electron leaves site zero, explores the lattice, and returns to the origin.
Translational invariance demands that the local correlation functions of the lattice model
are site independent, and are the same as the correlation functions of the impurity model.
This leads to the following self-consistency equation:

g−1
0 (iωn) = −

∑
ij

ti0t0j [Gij (iωn)−Gi0(iωn)G0j (iωn)/G00(iωn)] (29)

whereGlm(τ) ≡ −〈Tτ clσ (τ )c†mσ (0)〉H is the lattice Green’s function. Equations (28) and
(29) define the dynamical mean-field formalism that is exact in the large-D limit [26].

It is physically more transparent to rewriteSeff in the Hamiltonian form. We achieve
this by introducing a non-interacting electron bath whose dispersion and coupling to the
c0σ has to be determined self-consistently. Introducingη†

kσ and ηkσ as the creation and
annihilation operators for this fermion bath, wherek is a dummy momentum variable, we
can rewrite the effective impurity problem in terms of the following effective impurity
Hamiltonian:

H
eff

imp = h0 +
∑
kσ

tk(η
†
kσ c0σ + HC)+

∑
kσ

εkη
†
kσ ηkσ . (30)

The self-consistency equation (29) is equivalent to∑
k

t2k /(iωn − εk) = −
∑
ij

ti0t0j [Gij (iωn)−Gi0(iωn)G0j (iωn)/G00(iωn)]. (31)

Pictorially, we have reduced the task of solving the full lattice problem of figure 11(a)
into that of solving the problem of a fully interacting quantum impurity embedded in a
self-consistent fermionic sea, as is illustrated in figure 11(b).

4.2. Solution to the effective impurity problem

The crucial question is that of the nature of the self-consistent bath. What we found is
that, as long as the solution is metallic, the density of states of the fermionic bath at the
Fermi energy isfinite. This is a self-consistent statement. The reasoning goes as follows.
Assuming that the bath density of states is finite at Fermi energy, we can proceed to
solve the impurity problem in an asymptotically exact fashion by applying the bosonization
technique. Among the quantities that can be calculated asymptotically exactly is the local
Green’s functionc0. That this Green’s function has a regular spectral function is seen, in the
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Figure 12. Numerical results of the d- and c-electron Green’s functions versus the Matsubara
frequencyωn for a set of parameters for which the solution is a non-Fermi-liquid metallic state.
Solid lines come from the self-consistent exact-diagonalization method and the solid squares are
from quantum Monte Carlo simulation withβ = 64.

Coulomb-gas representation, by noting that the localc0 does not create a kink. A regular
Green’s functionc0 implies a regular self-energy for the c electrons, which, through the
self-consistency equation (31), in turn implies that the density of states of the self-consistent
fermionic bath is regular! The self-consistency is hence established. This argument applies
to any lattice. In the special case of a Lorentzian density of states, this statement is
more than asymptotically exact—it is exact. In the case of a Bethe lattice with infinite
coordination, we have numerically solved the self-consistency equations [53]. We indeed
found that the density of states of the bath fermions at the Fermi energy is finite as long
as the solution is metallic. In figure 12, we plot the imaginary part of the d-electron and
c-electron Green’s functions as functions of the Matsubara frequency. The zero-frequency
limit of these Green’s functions is identical to the density of states at the Fermi energy. It
is clear that, even though the d-electron Green’s function is divergent, as expected in the
non-Fermi-liquid form discussed in the previous sections, the c-electron density of states is
regular.

Armed with this understanding of the fermionic bath, the only essential difference
between this self-consistent Anderson model and the single-impurity generalized Anderson
model is that this time the effective d level is

E
imp

d = ε0
d − µ (32)

instead ofε0
d . The effective impurity level here is measured with respect to the Fermi energy

of the lattice model which is, of course, different for different amounts of electrons.
The fact that the density of states of the self-consistent fermionic bath at the Fermi

energy is finite implies that we can carry out an asymptotically exact analysis on the self-
consistent generalized Anderson impurity model exactly the way we did for the single-
impurity generalized Anderson model. The classification of the possible phases of the
single-impurity Anderson model applies to the self-consistent Anderson impurity model,
provided that we express the stiffness parameters of the phase diagram, figure 7, in terms of
the self-consistent parameters. In particular, there is a metallic non-Fermi-liquid state of the
extended Hubbard model that corresponds to the intermediate phase of the impurity model.
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As in the impurity model, we have a spin-excitation spectrum that is spin-1
2 quasiparticle-

like, and a charge-excitation spectrum that is incoherent. What we have is a local route
towards spin–charge separation in the extended Hubbard model.

Figure 13. (a) The crossover in terms of the temperature (T ) and the chemical potential
(µ) for the intermediate phase; (b) the electron density (n) versus the chemical potential for
the intermediate phase.1µ ∼ (T )(2ε

∗
t −1) where ε∗

t > 1 is the renormalized charge-stiffness
constant.

The fact that the impurity level of the self-consistent impurity problem is measured with
respect to the chemical potential implies that for a model with fixedε0

d , the temperature–
chemical-potential crossover is as given in figure 13(a).

4.3. The pinning of the chemical potential

A remarkable phenomenon takes place. This is the pinning of the chemical potential [85].
The critical chemical potential, at which the mixed-valence state persists to zero temperature,
corresponds to a range of electron densities. This can be seen as follows. The local
correlation functions of the extended Hubbard model in infinite dimensions are given by the
impurity problem. In particular, the occupation numbers of the lattice, for a given chemical
potential, can be obtained from the local Green’s functions of the corresponding impurity
model. It follows from our analysis of the impurity model that, at zero temperature,nd (and
alson = nd+nc) is a discontinuous function of the chemical potential:nd ∼ n+

d ≈ 1−O(t2)
for µ > µc, while nd ∼ n−

d ≈ O(t2) for µ < µc. At finite temperatures,nd is increased
from n−

d to n+
d asµ is increased fromµc −1µ to µc +1µ where

1µ ∼ 10(T ξ0)
(2ε∗

t −1). (33)

As long asnd is inside the range(n−
d , n

+
d ), the condition of equation (12) is satisfied. The

correlation functions will be controlled by the intermediate phase at criticality.
It is remarkable that the fact that our impurity model is associated to a lattice problem

forces the effective impurity model to be at criticality, with a larger symmetry than we would
have naively expected. Physically, for an incoherent state to be metallic, it is necessary
to allow charge transfer between the local degrees of freedom and the bath. This can
only happen if the local charge degrees of freedom are in equilibrium with the conduction
electron bath. This requires the heavy level to be at the chemical potential.
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4.4. Further remarks

The RG analysis that leads to the classification of the possible phases of the effective
impurity problem discussed in section 2 is based on a small-hybridization expansion. In
the context of the low-energy effective Hamiltonians for the high-Tc system, one of the
important questions is that of whether the extended Hubbard model can be further reduced
to an effective-one-band Hubbard model [86, 87]. One argument used in this context is
that, when the hybridization is sufficiently large, it is more appropriate to first diagonalize
the problem within a unit cell, leading to the Zhang–Rice singlet [86]. The effective
Hamiltonian for the low-energy local orbitals is the so-calledt–J Hamiltonian. In the light
of this construction, a natural question to ask is that of whether the physics of the extended
Hubbard model at large hybridization is different from that at small hybridization. The
large-D limit provides a unique opportunity to address this question. This problem has only
been numerically studied in the spinless version of the extended Hubbard model [53]. The
numerical solution indicates that the qualitative phase diagram is similar for the large- and
small-hybridization limits. However, the precise values of the exponents of the correlation
functions could be modified as the hybridization is increased. Further work along this
direction needs to be carried out.

We have established the existence of metallic non-Fermi-liquid states in the extended-
Hubbard-model equation (3) in the large-D limit. What happens in finite dimensions? This
is a question which is only beginning to be addressed. Some progress is reported in the
next section.

We close this section on a methodological note. Various numerical methods, such as
quantum Monte Carlo simulation [88–90] and exact diagonalization [91, 53], can be used to
solve the self-consistent dynamical mean-field equations associated with theD = ∞ limit.
Whatever the means, the solution to these equations should always describe the solution to
an impurity coupled to a self-consistent fermionic bath. And it is always instructive to ask
(a) what is the nature of the density of states of the self-consistent fermionic bath near its
Fermi energy (is it regular, gapped, vanishing with a power law, or singular with a power
law, to name a few); and (b) what are the low-lying levels associated with the impurity?
Armed with these items of information, it is usually possible to use the RG method or other
analytical means to determine the qualitative behaviour of the solution.

5. Competition between the local and short-range fluctuations: the alternative
large-D limit

One major advantage of the large-D approach is that of being able to treat local correlations
in a fully dynamical fashion. This feature is responsible for the uncovering of the metallic
non-Fermi liquids in the extended Hubbard model that other methods have failed to achieve.
One major disadvantage of the large-D approach is that spatial fluctuations beyond the one-
particle level are all frozen: inter-site interactions reduce to Hartree contributions only. For
physical systems in finite dimensions, inter-site RKKY or superexchange-type interactions
are expected to compete with local correlations. For instance, an unstable non-Fermi-liquid
fixed point arises due to the competition between the inter-impurity RKKY interaction and
the local Kondo couplings in the two-impurity Kondo problem [92]. In the Kondo-lattice
models, such a competition led to the competition between long-range magnetic ordering
and Kondo-singlet formation. In the absence of long-range ordering, the dynamical role of
the inter-site interactions in the local Kondo-like physics has largely been left unexplored.
From the large-D point of view, one way to recover the spatial fluctuations is via the
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perturbative 1/D expansion. Truncating the perturbation series to order(1/D)n requires
solving simultaneously clusters containing one, two,. . . , n + 1 sites embedded in their
respective self-consistent media [93]. The practicality of this procedure is unclear at this
stage. An alternative route is via a loop expansion with the requirement that theD = ∞
results be recovered at the saddle-point level, as has been constructed in models with certain
forms of quenched disorder [94]. For clean systems, it turns out to be difficult to formulate
such a loop expansion.

We have recently introduced an alternative large-D limit to study the interplay between
local correlations and short-range spatial fluctuations in the two-band extended Hubbard
model [54, 95]. In this procedure, an explicit inter-site density–density interaction term
is introduced, and is scaled in terms of the dimensionality such that itsfluctuation part
survives in the large-D limit. This procedure leads to an impurity embedded in a self-
consistent fermionic bathand a self-consistent bosonic bath. Detailed analysis [54] has so
far been carried out only for the spinless version of the extended Hubbard model, given by
the following Hamiltonian:

H =
∑
i

[E0
dndi + t (d

†
i ci + HC)+ V ndinci ] +

∑
〈ij〉

[tij c
†
i cj + vij :ndi ::ndj :]. (34)

The standard large-D limit is taken withtij of the form of equation (27) andvij of order
1/D. With that scaling, only the static component ofvij gives a non-vanishing contribution
in the large-D limit. Hence, inter-site interactions give only a Hartree contribution. The
alternative large-D limit is taken with equation (27) and

v〈ij〉 = v0/
√
D. (35)

In order to have a well defined large-D limit, it is necessary that the zero-frequency mode,
i.e. the Hartree term, be treated separately. In the absence of symmetry breaking, the effect
of the Hartree term is a change to the chemical potential. This is handled through normal
ordering, :n: ≡ n− 〈n〉.

The procedure outlined in the previous section leads to the following effective impurity
action:

S
eff

imp = S0 −
∑
iωn

c
†
0(iωn)g

−1
0 (iωn)c0(iωn)−

∑
iνn 6=0

nd0(iνn)χ
−1
0 (iνn)nd0(iνn). (36)

In addition to the self-consistency equation (29), an additional self-consistency equation is
required, this one for the density propagator:

χ−1
0 (iνn) =

∑
ij

vi0v0j [χij (iνn)− χi0(iνn)χ0j (iνn)/χ00(iνn)] (37)

whereχlm(iνn) is the Fourier transform of the lattice density–density correlation function,
χlm(τ) ≡ 〈Tτ :nl :(τ ):nm:(0)〉H . iνn is the bosonic Matsubara frequency.

The effective action can once again be written in terms of a single-impurity Hamilt-
onian. In our spinless case, this is a self-consistent resonant-level model with an additional
screening bosonic bath:

H
eff

imp = (ε0
d − µ)nd0 + t (d

†
0c0 + HC)+ V nd0nc0 +

∑
k

tk(η
†
kc0 + HC)+

∑
k

εkη
†
kηk

+
∑
q

Fq(ρq + ρ
†
−q):nd0: +

∑
q

Wqρ
†
qρq. (38)

Here,η†
k creates, like in the previous section, a fermionic bath with a dummy momentum

variable k. The dispersion,εk, and the hybridization coupling parameter,tk, are to be
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determined self-consistently. Likewise,ρ†
q creates a bosonic bath with a dummy momentum

variableq. The corresponding self-consistent dispersion and coupling parameters areWq

andFq .

Figure 14. The phase diagram of the Hamiltonian equation (34) in the mixed-valence regime.
gt = tρ0, gV = [1 − (2/π)tan−1(πρ0V/2)], and gv = ρ0v0. The circle labels a Kosterlitz–
Thouless critical point. The dashed line is schematic. The different phases are described in the
text.

Detailed analysis shows that, in this case, the fermionic bath density of states remains
regular. The spectral function of the bosonic bath, however, can be highly non-ohmic.
This is fortunate, for an impurity model with a fermionic bath having an arbitrary form of
density of states near the Fermi energy is quite difficult to handle [96–98]. On the other
hand, an impurity model coupled to a bosonic bath with non-ohmic spectral function can
still be analysed asymptotically exactly, within a modified kink-gas picture. Details are
given in reference [54]. The most interesting regime is again the mixed-valence regime,
for which the renormalized effective impurity level is zero. The self-consistent solution
is shown in figure 14. The phase diagram is specified in terms of three parameters,
gt = ρ0t , gV = [1 − (2/π)tan−1(πρ0V/2)], and gv = ρ0v0. They are essentially the
dimensionless hybridization, on-site density–density interactions, and inter-site density–
density interactions.

At gv = 0, the problem reduces to the usual large-D case discussed in the previous
section [53]. For our spinless problem, a Kosterlitz–Thouless transition takes place
describing the charge Kondo effect [74]. WhengV < gcritV , i.e.,−V < V crit0 , the solution is
a Fermi liquid. ForgV > gcritV , i.e.,−V > V crit0 , the solution is a line of non-Fermi liquids
with the connected local density susceptibility:

χ(τ) ≈ (ρc/τ)
α. (39)

The exponentα is interaction dependent, increasing from 0 to 2 as one moves away from
the critical point [99, 100].

The inter-site interactionv0 modifies the phase diagram in several ways. Consider first
gV > gcritV . The line of fixed points of thev0 = 0 problem becomes unstable. Remarkably,
the correlation functions in the new fixed points can be determined. In fact, they have the
same form as is given in equation (39).

For gV < gcritV , we are able to establish the existence of a phase transition asv0 is
increased. For sufficiently strongv0, the solution must be a non-Fermi liquid. Physically,
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the inter-site density–density interactions provide charge screening, which contributes to
the orthogonality effect. In the mixed-valence regime, this orthogonality helps realize the
weak-coupling fixed point with incoherent charge excitations. For sufficiently smallv0, on
the other hand, the Fermi-liquid solution is stable.

As a result, non-Fermi liquids with self-similar correlation functions occur even for
repulsive values of the on-site density–density interaction. It is therefore not necessary to
require attractive on-site interactions to realize the incoherent charge state.

A finite inter-site interactionv0 also changes the nature of the phase transition. We have
shown that [54] the phase transition is not of the Kosterlitz–Thouless type. We have been
unable to establish the precise nature of the phase transition.

The self-consistent equations and the kink-gas analysis can also be carried out in the
spinful extended Hubbard model. The form of scaling equations implies that the results
derived here for the spinless model carries over to the charge sector of the spin–charge-
separated intermediate phase [101].

The formalism outlined in this section can be generalized to various different contexts.
The effects of inter-site spin-exchange interactions are the obvious next problem to study.
Inter-site interactions of three or more particles can also be treated along this line.

6. Conclusions, new insights, and open questions

The focus of this article has been on the competition between local charge and local spin
fluctuations, both in the single-impurity Anderson model and in the lattice extended Hubbard
model. We have found that such a competition leads to metallic non-Fermi liquids in certain
interaction parameter ranges. In particular, we have identified a novel non-Fermi-liquid
mixed-valence state, called the intermediate phase. This phase displays the phenomenon of
spin–charge separation. The low-energy spin excitations are much like that of the strong-
coupling Fermi-liquid phase that one would derive from, for instance, the slave-boson
condensed phase within the slave boson large-N approach. The charge excitations are
distinctively of a non-Fermi-liquid form.

Are these non-Fermi-liquid states relevant to real materials? For single-impurity
problems, these non-Fermi-liquid phases can be realized only when the impurity level is
tuned to be close to the Fermi energy of the conduction electrons. We can envisage two
contexts in which this kind of fine tuning of the impurity level is physically feasible. The
first is in the context of dilute impurities in metals. The Fermi level of the conduction
electron sea can be varied by substituting for some of the elements in the compound with
ones of different valency. Called Fermi-level tuning, this mechanism has already been
invoked to explain the trend of the Kondo energy in certain uranium-based heavy fermions
[102, 103]. Valence fluctuations in uranium-based compounds are in general much stronger
than those in cerium-based compounds. It is conceivable that some of them have interaction
parameters that fall in the domain of the intermediate phase. Systematic studies of the
Fermi-level-tuning phenomenon, therefore, can play a significant role in the current search
for and study of non-Fermi liquids in f-electron-based materials. The second context where
impurity levels can be tuned is in mesoscopic systems. This time, the tuning is achieved
through biasing the confined area with respect to the leads [104]. In both cases, the accuracy
required for tuning the Fermi level is1∗/w, where1∗ is the renormalized resonance width,
andw is the conduction electron bandwidth.

For lattice problems, the level-tuning requirement is much less stringent. This is the
result of the phenomenon of the pinning of the chemical potential, discussed extensively in
section 4. There is a range of electron density over which theeffectiveimpurity level lies
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close to the Fermi level of the self-consistent fermion bath. Our findings of the existence
of both the strong-coupling and intermediate phases in the mixed-valence regime provide
new insights into the similarities of and differences between the heavy fermions and high-Tc
cuprates, mentioned at the beginning of this article. The spin dynamics of the intermediate
phase and the strong-coupling phase are similar, both displaying a crossover from the high-
temperature local moment regime into the low-temperature coherent regime. The charge
dynamics, on the other hand, is qualitatively different in these two phases. In the strong-
coupling Fermi-liquid phase, the charge dynamics tracks with the spin dynamics. In the
intermediate phase, the charge dynamics has non-Fermi-liquid behaviour characterized by
the correlation functions discussed in sections 2 and 3.

The phenomenology of the conventional heavy fermions, such as CeCu6 and UPt3, is
well described by the strong-coupling Fermi-liquid phase. Can the normal state of the
high-Tc cuprates be described by the intermediate phase? The contrasting behaviours seen
in the temperature dependences of the NMR relaxation rate and the electrical resistivity of
the cuprates (figure 2), when viewed in the context of those of the heavy fermions (figure
1), are consistent with the qualitative differences between the spin dynamics and charge
dynamics expected in the intermediate phase. However, these two quantities measure very
different correlation functions. The NMR relaxation rate measures mainly the momentum-
(q-) averaged spin response, while the electrical resistivity measures theq = 0 electrical
current–current correlation function. Therefore, the precise implications of the contrasting
temperature dependences of these two quantities in the cuprates are hard to specify. One
clear-cut probe of the relationship between the spin and charge excitations would be that
of comparing the temperature dependences of the electron spin resistivity and the electrical
resistivity [105]. This requires experimental measurement of the electron spin-diffusion
constant.

Our results also raise a number of theoretical questions. Unlike for the multi-channel
Kondo problem, the lattice model that we have studied, equation (3), has a well defined limit
of vanishing interactions,U → 0,V → 0 andJ → 0. In this limit of vanishing interactions,
and for dimensions higher than one, the perturbative RG analysis [19] would identify no
instability towards a metallic non-Fermi-liquid state. By focusing on the strong-coupling
limit, U = ∞, and taking the limit of infinite dimensions,D = ∞, we have identified
non-Fermi-liquid solutions. Obvious questions arise. (a) What happens as the on-site
Hubbard interactionU gradually decreases from infinity, all the way toU = 0? If a phase
transition takes place, is it also of the Kosterlitz–Thouless form? (b) What happens when
the dimensionalityD decreases from infinity to physical dimensions? The approach outlined
in section 5 provides a starting point for addressing one aspect of the finite-dimensionality
effects, namely the competition between the on-site and inter-site correlations. The results
summarized there imply that the non-Fermi-liquid phases survive the short-range spatial
fluctuations. The critical behaviour of the quantum phase transition from the Fermi-liquid
to non-Fermi-liquid states, on the other hand, is strongly modified by the spatial correlations.
As for (a), it remains an open problem at the present time.
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